故障诊断方法综述
引言
故障诊断(FD)全名是状态监测与故障诊断(CMFD)。基于解析冗余的故障诊断技术被公认为是这一技术的起源。所谓解析冗余,是指被诊断对象的可测变量之间(如输入与输出间,输出与输出间,输入与输入间)存在的冗余的函数关系,故障诊断在过去的十几年里得到了迅速的 发展 ,一些新的理论和方法,如遗传算法、神经 网络 、小波分析、模糊理论、自适应理论、数据融合等均在这里得到了成功的应用。
小波分析是20世纪80年代中期发展起来的新的数学理论和方法,它被认为是傅立叶分析方法的突破性进展。小波分析最初由法国学者Daubeches和Callet引入信号处理领域,它具有许多优良的特性。小波变换的基本思想类似于Fourier变换,就是用信号在一簇基函数张成空间上的投影表征该信号。小波分析优于博立叶之处在于:小波分析在时域和频域同时具有良好的局部化性质。小波分析方法是一种窗口大小(即窗口面积)固定但其形状、时间窗和频率都可以改变的时频局部化分析方法。即在低频部分具有较高的频率分辨率和较低的时间分辨率。因此,小波变换被誉为分析信号的显微镜,小波分析在信号处理、图像处理、话音分析、模式识别、量子物理、生物医学工程、 计算 机视觉、故障诊断及众多非线性 科学 领域都有广泛的应用。
动态系统的故障通常会导致系统的观测信号发生变化。所以我们可以利用连续小波变换检测观测信号的奇异点来检测出系统的故障。其基本原理是利用信号在奇异点附近的Lipschitz指数。Lipschitz指数时,其连续小波变换的模极大值随尺度的增大而增大;当时,则随尺度的增大而减小。噪声对应的Lipschitz指数远小于0,而信号边沿对应的Lipschitz指数大于或等于0。因此,可以利用小波变换区分噪声和信号边沿,有效地检测出强噪声背景下的信号边沿(援变或突变)。